OXYDATION PHOTOCHIMIQUE D'AMINES TERTIAIRES ET C'ALCALOÏDES XI'

PHOTOOXYDATION SENSIBILISÉE DE LA CORYNANTHÉIDINE. TRANSFORMATION DE DÉRIVÉS DE TYPE CORYNANTHÉINE EN DÉRIVÉS DE TYPE SARPAGINE

D. HERLEM, A. FLORÈS-PARRA et F. KHUONG-HUU* Institute de Chimie des Substances Naturelles du C.N.R.S., F 91190-Gif-sur-Yvette, France

et

A. CHIARONI et C. RICHE

Laboratoire de Cristallochimie, Institut de Chimie des Substances Naturelles du C.N.R.S., F 91190-Gur-sur-Yvette,

France

(Received in France 29 June 1981)

Résumé—La benzènesulfonyl-1 méthoxy-17 cyano-5 α tetrahydro-16 ζ , 17-2 α , 7 α corynanthéidine 21c, obtenue par oxydation photosensitilisée effectuée en présence de KCN de la benzène-sulfonyl-1 méthoxy-17 tetrahydro-16 ζ , 17-2 α , 7 α corynanthéidine 20d, a été transformée en benzènesulfonyl-1 tétrahydro-2 α , 7 α -20 α , 19-désoxy-10 sarpagine 24b. Un mécanisme est proposé pour la formation de l'hydroxy-6 α cyano-5 α dihydro-2 α , 7 α corynanthéidine 12b obtenue lors de l'oxydation photosensibilisé en présence de KCN de la trifluoroacétyl-1 dihydro-2 α , 7 α corynanthéidine 10b.

Abstract—1 - Benzenesulfonyl - 17 - methoxy - 5α - cyano - $16\zeta_1$, 17 - 2α , 7α - tetrahydrocorynantheidine **21c**, which was obtained by photosensitized oxidation of 1 - benzenesulfonyl - 17 - methoxy - $16\zeta_1$, 17 - 2α , 7α - tetrahydro-corynantheidine **20d** effected in the presence of KCN, has been transformed into 1 - benzene - sulfonyl - 2α , 7α - 20α , 19 - tetrahydro - 10 - deoxysarpagine **24b**. A mechanism is proposed for the formation of 6α - hydroxy - 5α - cyano - 2α , 7α - dihydrocroynantheidine was irradiated in the presence of rose bengale, oxygen and KCN.

Biogénétiquement, le passage des alcaloïdes de type corynanthéine, par exemple la corynanthéidine 1, aux alcaloïdes de type sarpagine, tel 2, est supposé, s'effectuer par une réaction de Mannich intramoléculaire, au niveau d'un intermédiaire immonium, tel 3, réalisant la cyclisation entre C-5 et C-16² (Schéma 1).

Van Tamelen et Oliver³ ont réalisé une synthèse biomimétique de l'ajmaline dans laquelle l'étape-clé est une cyclisation de ce type (Schéma 2).

Par ailleurs, l'oxydation photochimique des amines tertiaires, sensibilisée par les colorants, les cétones ou les carbures aromatiques en présence ou en absence d'oxygène conduit à la formation d'un ion immonium dont l'évolution rend compte des produits obtenus.⁴ Nous avons donc pensé utiliser cette réaction pour réaliser l'oxydation en 5 de la corynanthéidine 1 afin d'effectuer la transformation exposée dans le schéma 1. Les conditions utilisées pour l'oxydation photochimique (solution méthanolique, température ordinaire) ne sont pas favorables à une réaction de type Mannich *in situ.* Mais les ions immonium peuvent être captés lors de leur formation, sous forme d' α -aminonitriles, par addition de KCN au milieu réactionnel.⁴ Les sels d'immonium peuvent être régénérés à partir des α -aminonitriles par action d'un acide,⁵ d'un sel d'argent⁶ ou de cuivre II.⁷ C'est ainsi que l'amino-nitrile 4⁸ dérivé de la vincadifformine traité en solution chloroformique par BF₃-OEt₂ fournit le dimère 5; la cyano-3 tabersonine 6⁸ traitée en solution chloroformique par l'acétoacétate d'éthyle en présence de BF₃-OEt₂ conduit au céto-ester

7 et le produit de condensation 9 est obtenu lorsque la cyano-17 lupanine 8° est mise en solution chloroformique en présence d'imidazole et de BF₃-OEt₂.

Nous avons donc dans un premier temps préparé divers dérivés de la corynanthéidine 1 possédant en 5 une fonction nitrile et dans un deuxième temps tenté de réaliser la cyclisation entre C-5 et C-16.

L'oxydation photochimique sélective de l'azote N-4 de la corynanthéidine 1 n'est pas réalisable sans protection préalable du noyau indolique.¹⁰ La corynanthéidine a pyruvate de sodium,¹² sous barbotage d'oxygène, fournit, après saponification, un mélange de cyano- 5α dihydro- 2α , 7α corynanthéidine **11b** et d'hydroxy- 6α cyano- 5α dihydro- 2α , 7α corynanthéidine **12b**.

Les structures de 11b et de 12b sont déduites de leurs données spectrales et en particulier de l'étude comparative de leur spectre de RMN¹³C avec ceux de 1¹³ et de 10a (Tableau I). Celle de 12b a été confirmée par une étude cristallochimique aux rayons X (Fig. 1) qui a permis de préciser les configurations *cis* α des groupe-

donc été réduite en indoline 10a par action du borohydrure de sodium dans l'acide trifluoroacétique.¹¹ L'indoline trifluoroacétylée 10b irradiée en solution méthanolique en présence de rose bengale, de KCN, de ments hydroxyle et nitrile d'une part et des hydrogènes en 2 et 7 d'autre part.¹⁴ Il faut noter l'existence d'alcaloïdes indoliques naturels possédant une fonction oxygénée en 6, l'ervincidine, la gardnutine, la déhy-

Fig. 1. Vue en perspective de 12b donnant la numérotation des atomes et les principaux angles de torsion exprimés en degrés (écart-type moyen: 1°).

Une réaction analogue est observée lorsque la dihydrocorynanthéidine **10a** est irradiée, en présence de rose bengale, de KCN, de pyruvate de sodium et d'oxygène, sans protection préalable de N-1. L'hydroxy-nitrile **17** est obtenu. Il y a d'abord eu oxydation de **10a** en indole puis oxydation par ${}^{1}O_{2}$ du noyau indolique en hydroperoxyimmonium lequel par réaction avec KCN puis avec le pyruvate de sodium fournit **17** (Schéma 4).

La structure de 17 est déduite de ses données spectrales, en particulier de la comparaison de son spectre de RMN¹³C avec celui de 10a (Tableau 1):

10a C-2 64.4, **17** C-2 74.3 (effets α de CN, β de OH); **10a** C-3 64.1, **17** C-3 63.6 (effets β de CN, γ de OH axial);

10a C-5 54.6, 17 C-5 50.1 (effet γ de OH axial);

10a C-6 29.2, 17 C-6 35.4 (effet β de OH, effet γ de CN équatorial ~ 0);

10a C-7 40.3, 17 C-7 79.1 (effets α de OH, β de CN).

L'indoline 11b a été oxydée par CrO_3 : pyridine en cyano-5 α corynanthéidine 18a, laquelle a été méthylée en

Schéma 3.

drovoachalotine, l'églandulosine et l'églandine par exemple.

Le mécanisme de formation de 12b a été étudié. Pour cela, le dérivé acétylé 10c a été préparé et irradié dans les conditions précédemment décrites pour fournir 11c et 12c. L'amino-nitrile 11c, traité par l'acétate d'argent⁶ fournit l'énamine 13 qui, mise dans les mêmes conditions de photooxydation, fournit 12c.[†] Une réaction de transfert d'acycle se produisant entre N-1 et l'hydroxyle en 6α , l'identification des produits a été réalisée après acétylation en 12d. Si, dans la photooxydation de 13, le pyruvate de sodium est omis, il se forme un produit polaire instable qui n'a pu êtra isolé. Dans la réaction des énamines avec ¹O₂, la formation d'un intermédiaire zwitterionique, hydroperoxyimmonium susceptible de réagir avec les bases, a été postulée.¹⁵ L'attaque d'un tel intermédiaire 14 obtenu par action de ¹O₂ sur l'énamine 13 conduirait à un hydroperoxynitrile 15 réduit par le pyruvate de sodium en hydroxy-nitrile 12c (Schéma 3).

L'ouverture du dioxétanne 16 par KCN donnerait un hydroxy-nitrile *trans*.

N₁-méthyl cyano- 5α corynanthéidine 18b. La comparaison des spectres de RMN¹³C de 1 et de 18a et 18b confirme la stéréo-chimie 5α du groupement cyané (Tableau 1).

La réaction de cyclisation entre C-5 et C-16 n'a pu être réalisée avec le dérivé 18b. En effet, celui-ci, traité par un sel d'argent, fournit le dérivé aromatique 19. Mis dans différentes conditions acides, il est, soit retrouvé intact, soit dégradé. De plus, il n'a pas été possible ni de saponifier, ni de réduire le groupement carbométhoxy en 16.

L'hydrolyse de la fonction éther d'énol de la corynanthéidine 1 et de ses dérivés étant difficile,¹⁶ l'acétal 20a a été préparé et irradié après trifluoroacétylation en 20b, acétylation en 20c ou benzènesulfonylation en 20d, pour fournir 21a, 21b et 21c respectivement.

L'hydrolyse acide de 21a et de 21b fournit l'énamine pentacylique 22a, laquelle peut être obtenue par irradiation de l'énamine 22b, produit d'hydrolyse de 21a. Traité par un sel d'argent, 21a conduit au dimère 23, alors que son dérivé N_1 – acétylé 21b fournit dans les mêmes conditions une énamine $\Delta 5(6)$, trop instable pour être utilisée pour des transformations ultérieures.

Finalement, le composé 21c, N_1 -benzènesulfonylé, a été saponifié par action de la potasse aqueuse. Après

[†]L'irradiation du dérivé trifluoroacétylé 10b fournit un mélange de 11a et 11b. Ce dernier composé n'a pu être trifluoroacétylé de nouveau en 11a. Ce fait explique la démarche suivie.

Tableau I. Déplacements chimiques des carbones en RMN¹³C, δ exprimés en ppm, TMS référence O, produits en solution dans CDCl₃

	ر مر م	<u>10a</u>	11a	<u>12b</u>	1Z.	<u>18a</u>	<u>18b</u>	19	22b	22a
2	136,0	64,4	62,9	61,9	74,3	136,0*	138,5***	132,0	64,4	63,8
3	51,2	64,1	58,3	58,2	63,6	56,4	57,7	119,4	52,3	52,2
5	53,4	54,6	54,1	64,6	50,1	53,1	53,2	133,8	49,3	48,5
6	21,9	29,2	31,4	69,0	35,4	25,9	26,5	132,3	22,8	25,2
7	107,9	40,3	37,0	45,5	79,1	104,2	104,8	142,8	41,5	38,3
8	127,7	135,0	133,0	131,3	133,6	125,8	126,6	134,4	135,2	133,3
9	117,9	118,8	119,3	119,4	121,2	118	118,1	122,8	108,9	109,2
10	121,0	123,1	123,6	125,4	121,9	121,7	121,7	122,2	123,7	124,2
11	119,2	127,1	127,9	128,3	129,2	119,6	119,5	115,2	127,6	128,3
12	110,9	110,7	110,7	110,7	112,1	110,8	109,1	111,0	121,8	122,2
13	136,2	150,1	150,1	150,0	145,7	133,8*	135,7**	145,4	145,6	145,5
14	29,8	29,4	28,5	28,0	27,1	29,8	30,9	30,4	35,0	34,4
15	40,8	40,3	39,3	39,3	39,6	40,3	40,4	38,5	33,1	33,0
16	111,8	111,8	111,3	111,3	111,1	110,8	111,3	108,3	105,5	106,2
17	160,7	160,4	160,6	160,9	160,6	160,7	161,0	162,7	138,3	138,1
18	12,8	13,1	12,9	12,9	12,9	12,7	12,8	11,7	12,1	12,0
19	19,1	19,1	18,8	18,8	19,0	18,6	18,9	22,3	24,1	24,0
20	40,0	40,7	40,6	40,4	40,4	39,2	40,9	29,5	45,4	45,0
21	57,9	58,8	56,1	55,9	58,2	55,6	56,3	57,9	52,3	50,5
о <u>с</u> н ₃	61,2	61,6	61,7	61,9	61,7	61,6	61,7	62,2		
соэс <u>н</u> ,	51,2	51,2	51,3	51,4	51,3	51,4	51,4	51,7	51,4	51,6
<u>с</u> оосн,	3169,5	169,1	169,0	169,3	168,8	168,9	169,2	168,9	170,5	170,2
CN			117,1	115,5	121,0	117,9	117,3			118,8
N ₁ -CH	3						31,7	33,8		

(*) et (**) Ces chiffres peuvent être intervertis.

acidification par l'acide acétique, l'acide correspondant a été isolé et a fourni par chauffage le mélange d'aldéhydes 24a avec un rendement de l'ordre de 20%. 24a a été réduit en 24b par le borohydrure de sodium. Les difficultés rencontrées pour effectuer cette cyclisation (le rendement de la réaction décrite par Van Tamelen et Oliver était de 8 à 18%) sont en accord avec les essais de cyclisation intramoléculaire de sels d'im-

monium décrits par Bates et Rapoport.¹⁷ La faible quantité de produit **24b** que nous avons obtenue n'a pas permis d'effectuer sa transformation en dérivé indolique.

PARTIE EXPÉRIMENTALE

Les points de fusion, pris en tube capillaire, ne sont pas corrigés. Les pouvoirs rotatoires ont été déterminés à une concentration voisine de 1% dans CHCl₃ RP (0.5% EtOH), à une température voisine de 20°, à l'aide du polarimètre Perkin-Elmer 141. Les spectres de RMN'H ont été enregistrés sur spectromètres Varian T 60 ou EM 360, les produits, sauf exceptions signalées, étant en solution dans CDCl₃ (TMS, référence O), les déplacements chimiques δ sont exprimés en ppm et les constantes de couplage en Hz (s singulet, d doublet, m multiplet, ttriplet, *q* quadruplet). Les spectres de RMN¹³C ont été enregistrés sur appareil Brücker HX 90 ou WP 80, les produits étant en solution dans CDCl₃ (TMS, référence O), les déplacements chimiques δ sont exprimés en ppm. Les spectres de masse ont été enregistrés sur appareil EMI MS 50. Les irradiations ont été effectuées à l'aide d'une lampe Philips SP 500 à travers un filtre en pyrex. Les composés caractérisés par leur formule moléculaire ont donné des résultats micro-analytiques à ± 0.3% de la théorie pour les éléments soulignés. Les spectres de RMN à 400 MHz ont été enregistrés sur l'appareil expérimental du Laboratoire d'Électronique de l'U.E.R. de Paris-Sud, Centre d'Orsay.

Dimère 5. Une solution de 4 (100 mg) dans un mélange C_6H_6 -CH₂Cl₂: 1-1 (5 cm³) est traitée 24 hr à la température ordinaire par BF₃-OEt₂ (0.2 cm³). Après dilution avec H₂O, addition de NH₄OH et extraction par CH₂Cl₂, le dimère 5 (70 mg), non cristallisé, est obtenu après chromatographie préparative sur plaque de silice; SM: M⁺ 760, m/e 381 pic de base; RMN³H: 2.33 (3H, s, COÇH₃), 2.40 (3H, s, COÇH₃), 3.63 (6H, s, COOCH₃), 4.43 (1H, d, J = 4 Hz, H-2), 4.53 (1H, d, J = 4 Hz, H-2'), 6.03 (1H, s, H-5'), 6.8-7.26 (8H, m, H aromatiques).

Acéto-2' acétyl-3 tabersonine 7. Une solution dans C_6H_6 -CH₂Cl₂ 1-1 (5 cm³) de cyano-6 tabersonine 6 (100 mg), d'acétoacétate d'éthyle (1 cm³) et de BF₃-OEt₂ (0.2 cm³) est laissée 24 hr à la température ordinaire. Après dilution, alcalinisation par NH₄OH et extraction par CH₂Cl₂, le dérivé 7 non cristallisé (60 mg) est obtenu après purification sur colonne de silice CC4 Malinckrodt; SM: M⁺464, M-1, m/e 249; RMN¹H: 0.6 (3H, t, J = 3 Hz, CH₃-18), 1.2 (3H, t, J = 6 Hz, O-CH₂-CH₃), 2.3 (3H, s, COCH₃), 3.7 (3H, s, COOCH₃), 4.16 (2H, q, J = 6 Hz, O-CH₂-CH₃), 4.73 (2H, m, H-2' et H-15), 6.06 (1H, m, H-14), 6.53-7.0 (4H, m, H aromatiques).

[Imidazoyl-1']-17 α lupanine 9. Une solution dans CH₂Cl₂-C₆H₆:

1-1 (5 cm³) de **8** (100 mg), d'imidazole (60 mg) et de BF₃-OEt₂ (0.2 cm³) est laissée 24 h à la température ordinaire. Après traitement habituel, le dérivé 9 (55 mg) non cristallisé, est obtenu après purification sur plaque préparative de silice; SM: M⁺ 314, m/e 246 (M-Imidazole); RMN¹H: 3.33 (1H, m, H-6), 4.05 (1H, d, J = 2 Hz, H-17e), 4.45 (1H, dt, J = 13 Hz, J' = 1.5 Hz, H-10e), 6.96 (2H, s, H-4' et H-5'), 7.53 (2H, m, H-2).

Dihydro- $2\alpha,7\alpha$ corynanthéidine 10a. A une solution de 1 (1 g) dans CF₃ COOH (10 cm³), on ajoute avec précautions en 30 min. NaBH₄ (533 mg). Après 4 hr sous agitation à la température ambiante, on ajoute de al glace, alcalinise avec NH₄OH et extrait par CH₂Cl₂ le dérivé 10a (1 g), cristallisable dans CH₂Cl₂, $F = 246^{\circ}$, (α)_D-1; SM: M⁺ 370, m/e 253, 240, 196; IR (nujol): 1700 cm⁻¹ (ester conjugué); UV: $\lambda_{max\,nm}$ (EtOH) 243, 293 ϵ 18300, 3400; RMN¹H: 3.63 (3H, s, OCH₃), 3.7 (3H, s, COOCH₃).

Cyano-5 α dihydro-2 α ,7 α corynanthéidine 11b et hydroxy-6 α cyano-5 α dihydro-2 α ,7 α corynanthéidine 12b. (a) A une solution de 10a (1.45 g) dans CH₂Cl₂ sec (10 cm³) à 0°, on ajoute de l'anhydride trifluoroacétique (2 cm³). Après 12 hr à la température du laboratoire, on ajoute de la glace, alcalinise avec NH₄OH et extrait par CH₂Cl₂ la N-1-trifluoroacétyl dihydro-2 α ,7 α corynanthéidine 10b (1.48 g) non cristallisée; SM: M⁺ 466, m/e 369 (M-COCF₃); IR: 1680 cm⁻¹ (ester, amide); RMN¹H: 3.44 (3H, s, OCH₃), 3.48 (3H, s, CO₂CH₃), 4.96 (1H, t, J = 7 Hz, H-2), 6.9-7.26 et 7.5-7.86 (5H, m, H éthylénique et aromatiques).

(b) Une solution méthanolique (100 cm^3) de **10b** (1.45 g), de KCN (100 mg), de pyruvate de sodium (100 mg) et de rose bengale (10 mg) est irradiée, sous barbotage d'O₂, jusqu'à disparition de **10b** (1 hr). Une solution de Na₂CO₃ est ajoutée et l'on chauffe 30 min. au bain-marie pour hydrolyser le groupe trifluoroacétamide. Après extraction par CH₂Cl₂, on obtient un mélange (913 mg) séparé par chromatographie sur alumine standardisée Merck. L'éluat par toluène-CH₂Cl₂ fournit **11b** (434 mg), F 106–109°, (MeOH/H₂O), $(\alpha)_D - 36^\circ$, $C_{23}H_{29}N_3O_3$; SM: M⁺ 395, *m/e* 368 (M-HCN); IR: 3330 cm⁻¹ (NH), 2230 cm⁻¹ (C = N), 1700 et 1240 cm⁻¹ (ester), 1630 cm⁻¹ (aromatiques); UV $\lambda_{max\,nm}$ (EtOH): 244, 291, ϵ 18200, 2330; RMN¹H: 3.56 (3H, *s*, OCOCH₃), 6.3–7.16 (5H, *m*, H éthylénique et aromatiques).

L'éluat au CH₂Cl₂ fournit **12b** (380 mg), F 240° (CH₂Cl₂/MeOH), $(\alpha_{D} - 72^{\circ}, C_{23}H_{29}N_{3}Q_{4}; SM: M^{+} 411, M^{-17}, M^{-27}; IR (nujol): 3400 cm^{-1} (OH), 3340 cm^{-1} (NH), 1700 et 1240 cm^{-1} (ester conjugué); UV <math>\lambda_{max nm}$ (EtOH) 224, 291, ϵ 21400, 3650; RMN¹H, 400 MHz: 0.85 (3H, t, J = 4 Hz, CH₂-CH₃), 3.7 (3H, s, OCH₃), 3.83 (3H, s, COOCH₃), 3.71 (1H, dd, H-6), 3.86 (1H, d, J = 5 Hz, H-5), 3.93 (1H, m, H-2), 6.7 (1H, d, J = 7 Hz, H-10 ou H-11), 6.75 (1H, t, J = 7 Hz, H-9 ou H-12), 7.08 (1H, t, J = 7 Hz, H-12 ou H-9), 7.27 (1H, d, J = 7 Hz, H-11 ou H-10), 7.38 (1H, s, H-17).

Structure cristalline de 12b. Un cristal de dimensions $0.13 \times 0.33 \times 0.52$ mm a été utilisé pour l'enregistrement des intensités et la détermination des dimensions de la maille cristalline.

Données cristallographiques. système orthorhombique, groupe spatial P2₁2₁2₁, Z = 4, a = 26.719(4), b = 10.032(2), c = 8.119(2) Å, $d_c = 1.25 \text{ g cm}^{-3}$.

L'enregistrement des données de diffraction a été réalisé sur un diffractomètre Philips PW 1100 avec la radiation K α du Cuivre ($\lambda = 1.5418$ Å). Sur un total de 2030 réflexions mesurées, 1484 répondant au critère I > $3\sigma(I)$ ont été considérées comme observées.

La structure, résolue par les méthodes directes, a été affinée par la méthode des moindres carrés en minimisant l'expression $\Sigma w(|F_0| - |F_c|)^2$ avec $w = 1/\sigma^2(F_0)$. Les atomes d'hydrogène ont été localisés sur deux séries de Fourier-différence successives (sauf ceux des méthyles et de l'hydroxyle O(30)). Ils ont été introduits dans les calculs des facteurs de structure dans une position idéalisée ($d_{C-H} = 1.0$ Å) avec un facteur de température isotrope égal à celui de l'atome porteur. Le facteur résiduel final est de 0.071. Les facteurs de diffusion atomique utilisés sont ceux de la Réf. 18. Les coordonnées atomiques sont rassemblées dans le Tableau 2, les distances, les angles de valence, dans le Tableau 3.

Acétyl-1 dihydro-2 α , 7 α corynanthéidine 10c. Une solution de 10a (650 mg) dans la pyridine (10 cm³) et l'anhydride acétique (10 cm³) est laissée 12 hr à la température ambiante. Après concentration sous pression réduite, le résidu repris par H₂O/NH₄OH, extrait par CH₂Cl₂ fournit 10c (650 mg), non cristallisé, (α)_D - 106°; SM: M⁺ 412, *m/e* 369, 381, 397; IR: 1710 et 1240 cm⁻¹ (ester conjugué), 1650 cm⁻¹ (amide); UV $\lambda_{max\,nm}$ (EtOH): 248, 21200; RMN'H: 2.26 (3H, *s*, COCH₃), 3.5 (3H, *s*, OCH₃), 3.53 (3H, *s*, COOCH₃), 4.80 (1H, *dd*, J = 6 Hz, J' = 8 Hz, H-2), 6.8-7.8 (5H, *m*, H éthylénique et aromatiques).

Acétyl-1 Cyano-5 α dihydro-2 α ,7 α corynanthéidine 11c et Acétyl-1 Acétoxy-6 α cyano-5 α dihydro-2 α ,7 α corynanthéidine 12d. Une solution méthanolique (100 cm³) de 10c (202 mg), de KCN (118 mg), de pyruvate de sodium (118 mg) et de rose bengale (10 mg) est irradiée, sous barbotage d'O₂, jusqu'à disparition de 10c. Après traitement habituel, le résidu obtenu est chromatographié sur alumine standardisée Merck. L'éluat au CH₂Cl₂ fournit 11c (140 mg), non cristallisé, (α)_D - 104°, C₂₅H₃₁N₃O₄; SM: M⁺ 437, M-27; IR: 1700 et 1250 cm⁻¹ (ester

Tableau 2. Coordonnées atomiques (x 104) pour les atomes non hydrogènes

	×	۲	Z
N 1	2349 (2)	2534 (7)	3775 (9)
C 2	2400 (3)	3096 (8)	5440 (10)
С 3	2946 (3)	3323 (8)	6003 (10)
N 4	3182 (2)	2032 (7)	6401 (8)
C 5	2899 (3)	1351 (9)	7674 (10)
C 6	2378 (3)	9E7 (9)	7044 (10)
C 7	2088 (2)	2167 (8)	6511 (10)
C 8	1681 (3)	1812 (9)	5303 (12)
C 9	1202 (3)	1323 (10)	5525 (15)
C 10	890 (3)	1165 (11)	4222 (21)
C 11	1071 (4)	1437 (11)	2644 (19)
C 12	1546 (3)	1884 (10)	2360 (12)
C 13	1851 (3)	2089 (8)	3708 (12)
C 14	3246 (2)	4087 (8)	4692 (10)
C 15	3784 (2)	4276 (9)	5330 (10)
C 16	4114 (3)	5223 (9)	4387 (10)
C 17	4097 (3)	5496 (9)	2756 (12)
C 18	4523 (4)	1052 (13)	4240 (20)
C 19	4112 (3)	2107 (9)	4049 (12)
C 20	4017 (2)	2899 (9)	5618 (11)
C 21	3707 (2)	2168 (8)	6507 (10)
C 22	4516 (3)	5861 (11)	5306 (12)
0 23	4622 (2)	5574 (8)	6702 (9)
C 24	4752 (2)	6853 (8)	4494 (9)
C 25	5167 (3)	7453 (13)	5384 (16)
0 26	3763 (2)	4938 (7)	1728 (7)
C 27	3875 (3)	5131 (11)	-23 (11)
C 28	2841 (3)	2173 (11)	9216 (12)
N 29	2787 (3)	2856 (11)	10319 (11)
0 30	2103 (2)	254 (6)	8277 (7)

Tableau 3. Distances interatomiques en Å et angles de valence en degrés

$ \begin{array}{c} N(1) - C(2) \\ N(1) - C(13) \\ C(2) - C(3) \\ C(2) - C(7) \\ C(3) - N(4) \\ C(3) - C(14) \\ N(4) - C(21) \\ C(5) - C(6) \\ C(5) - C(28) \\ C(6) - C(7) \\ C(6) - C(7) \\ C(6) - C(7) \\ C(6) - C(13) \\ C(8) - C(13) \\ C(9) - C(10) \\ C(10) - C(11) \end{array} $	1.47 (1) $1.54 (1)$ $1.52 (1)$ $1.52 (1)$ $1.48 (1)$ $1.52 (1)$ $1.45 (1)$ $1.47 (1)$ $1.51 (1)$ $1.51 (1)$ $1.51 (1)$ $1.55 (1)$ $1.54 (1)$ $1.54 (1)$ $1.54 (1)$ $1.36 (2)$ $1.40 (2)$	C(11)-C(12) C(12)-C(13) C(14)-C(15) C(15)-C(16) C(15)-C(20) C(16)-C(22) C(16)-C(22) C(16)-C(22) C(16)-C(20) C(19)-C(20) C(20)-C(21) C(22)-U(23) C(22)-U(23) C(22)-U(23) C(22)-U(25) U(26)-C(27) C(28)-N(29)	$\begin{array}{c} 1.37 (2) \\ 1.38 (1) \\ 1.54 (1) \\ 1.55 (1) \\ 1.53 (1) \\ 1.35 (1) \\ 1.35 (1) \\ 1.35 (2) \\ 1.52 (1) \\ 1.52 (1) \\ 1.52 (1) \\ 1.20 (1) \\ 1.45 (1) \\ 1.47 (1) \\ 1.14 (1) \end{array}$
C(2)-N(1)-C(13) $N(1)-C(2)-C(3)$ $N(1)-C(2)-C(7)$ $C(3)-C(3)-C(14)$ $C(3)-C(3)-C(14)$ $C(3)-N(4)-C(21)$ $C(3)-C(4)-C(21)$ $C(3)-C(4)-C(11)$ $C(3)-C(10)-C(11)$	$104 \cdot 2$ (7) $114 \cdot 6$ (7) $103 \cdot e$ (7) $116 \cdot 0$ (7) $109 \cdot 8$ (6) $111 \cdot 2$ (7) $111 \cdot 4$ (7) $112 \cdot 9$ (6) $110 \cdot 3$ (6) $110 \cdot 9$ (7) $112 \cdot 8$ (6) $110 \cdot 9$ (7) $112 \cdot 8$ (8) $109 \cdot 4$ (7) $112 \cdot 0$ (7) $109 \cdot 4$ (7) $113 \cdot 8$ (9) $108 \cdot 8$ (8) $110 \cdot 9 \cdot 4$ (7) $131 \cdot 8$ (9) $109 \cdot 4$ (9) $119 \cdot 4$ (9) $119 \cdot 4$ (9) $119 \cdot 4$ (10) $119 \cdot 4$ (10) $119 \cdot 4$ (11) $118 \cdot 8$ (12)	C(10)-C(11)-C(12) $C(11)-C(12)-C(13)$ $N(1)-C(13)-C(13)$ $C(12)-C(13)-C(12)$ $C(2)-C(13)-C(12)$ $C(14)-C(15)-C(16)$ $C(14)-C(15)-C(20)$ $C(16)-C(15)-C(20)$ $C(15)-C(16)-C(22)$ $C(15)-C(16)-C(22)$ $C(15)-C(20)-C(19)$ $C(15)-C(20)-C(21)$ $N(4)-C(21)-C(20)$ $C(16)-C(22)-D(24)$ $C(22)-D(24)-C(25)$ $C(20)-C(21)$ $C(20)-C(21)-C(20)$ $C(20)-C(21)-C(20)$ $C(16)-C(22)-D(24)$ $C(22)-D(24)-C(25)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(21)-C(20)$ $C(16)-C(22)-D(24)$ $C(22)-D(24)-C(25)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(16)-C(22)-D(24)$ $C(20)-C(22)-D(24)-C(25)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(22)-D(24)-C(25)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)$ $C(20)-C(20)-C(22)-D(24)$ $C(20)-C(20)-C(22)-D(24)-C(25)$ $C(20)-C(20)-C(20)-C(21)$ $C(20)-C(20)-C(21)-C(20)$ $C(20)-C(20)-C(20)-C(21)-C(20)$ $C(20)-C(20)-C(20)-C(20)-C(20)$ $C(20)-C(2$	$122.7 (12) \\117.6 (10) \\109.5 (8) \\129.6 (9) \\120.9 (9) \\108.4 (7) \\116.9 (7) \\108.6 (7) \\114.2 (7) \\114.2 (7) \\115.9 (8) \\123.0 (9) \\113.2 (9) \\113.2 (9) \\113.2 (7) \\114.2 (7) \\114.4 (7) \\123.4 (9) \\114.7 (9) \\121.8 (9) \\114.7 (9) \\121.8 (9) \\114.7 (9) \\114.4 (7) \\14.4 (7) \\14.5 (11) \\175.8$

conjugué), 1660 cm⁻¹ (amide), 2220 cm⁻¹ ($C \equiv N$); RMN¹H: 2.3 (3H, s, COCH₃), 3.6 (3H, s, OCH₃), 3.66 (3H, s, COOCH₃), 4.8 (1H, dd, H-2), 6.9-7.6 (5H, m, H éthylénique et aromatiques).

ŝ

L'éluat au CH₂Cl₂-MeOH fournit 12c (23 mg), non cristallisé (SM: M⁺ 453), qui est acétylé par traitement 24 h à la température ambiante par la pyridine (0.5 cm^3) et l'anhydride acétique (0.5 cm^3) . Après traitement habituel, 12d (23 mg), non cristallisé est obtenu; SM: M⁺ 495; RMN¹H (400 MHz): 0.9 (3H, s, J = 4 Hz, CH-<u>CH₃</u>), 2.24 (3H, s, COCH₃), 2.33 (3H, s, COCH₃), 3.65 et 3.66 (6H, 2s, OCH₃ et COOCH₃), 4.10 (1H, d, J = 7 Hz, H-5), 5.03 (1H, m, H-2), 5.66 (1H, dd, J = 10 Hz, J' = 7 Hz, H-6), 7.06-7.28 (5H, H aromatiques et éthylénique).

Déhydro-5 Acétyl dihydro- 2α , 7α corynanthéidine 13. Une solution éthanolique (20 cm³) de 11c (86 mg) est additionnée d'acétate d'Ag. Après 12 hr d'agitation, sous N₂, à la température du laboratoire, la solution filtrée et évaporée fournit 13 (RMN'H: 4.66 et 6 (2H, AB, J = 7 Hz, H-5 et H-6) dont une partie (50 mg) est irradiée en solution méthanolique (20 cm³) en présence de KCN (20 mg), de pyruvate de sodium (20 mg), de rose bengale (5 mg), sous barbotage d'O₂. Après traitement habituel, on obtient 12c dont l'acétylation par l'anhydride acétique (0.2 cm³) dans la pyridine (0.2 cm³) fournit un produit identique en tous points à 12d.

Hydroxy-7 α cyano-2 α corynanthéidine 17. Une solution méthanolique (100 cm³) de 10a (619 mg), de KCN (162 mg), de pyruvate de sodium (206 mg) et de rose bengale (10 mg) est irradiée sous barbotage d'O₂. Après 15 min., 10a est complètement transformé et le traitement habituel fournit un mélange (597 mg) séparé par chromatographie sur alumine standardisée Merck. L'éluat par CH₂Cl₂ (192 mg) fournit 17, non cristallisé, (α)_D - 160°; SM: M⁺ 411, M-17; IR: 2220 cm⁻¹ (C \equiv N), 1700 et 1240 cm⁻¹ (ester conjugué); UV $\lambda_{max nm}$ (EtOH): 242.4, 293, ϵ 15740, 2420; RMN¹H: 3.63 (3H, s, OCH₃), 3.72 (3H, s, COOCH₃), 4.48 (1H, s large, NH), 6.7-7.4 (5H, m, H éthylénique et aromatiques). Cyano-5 α corynanthéidine 18a. Une solution de 11b (105 mg) dans CH₂Cl₂ sec (30 cm³) on ajoute une solution de CrO₃ (146 mg) dans la pyridine (2 cm³). Après 12 hr à la température ordinaire, le traitement habituel fournit une mousse purifiée par chromatographie sur colonne d'alumine standardisée Merck. L'éluat au CH₂Cl₂ fournit 18a (34 mg), F 226-230°, (α)_D - 188°; C₂₃H₂₇N₃O₃; SM: M⁺ 393, M-27; UV $\lambda_{max nm}$ (EtOH): 228, 247, 84, 293, ϵ 42299, 15839, 8029 et 5895; RMN¹H: 3.67 (6H, s, OCH₃ et COOCH₃), 6.96-7.53 (5H, m, H éthylénique et aromatiques), 8.01 (1H, s large, NH).

Cyano-5 α Méthyl-1 corynanthéidine 18b. Une solution de 18a (40 mg) dans DMSO (3 cm³) est additionnée de KOH pulvérisée (20 mg). Après 15 min. d'agitation, on ajoute MeI (1 cm³) et, après 1 hr sous agitation, le mélange est dilué et extrait par un mélange C₆H₆-éther. Après plusieurs lavages avec de l'eau, la phase organique évaporée fournit 18b (35 mg), F 179° (MeOH), (α)_D – 204°, C₂₄H₂₉N₃O₃; SM: M⁺ 407, M-27; IR: 1700 et 1240 cm⁻¹ (ester conjugué), 2220 cm⁻¹ (C=N); UV $\lambda_{max nm}$ (EtOH): 232, 285, ϵ 30523, 6155; RMN¹H: 3.6 (3H, s, N-CH₃), 3.62 (6H, s, OCH₃ et COOCH₃), 6.88–7.38 (5H, m, H aromatiques et éthylénique).

Didéhydro-3 (N-4), 5(6) méthyl-1 corynanthéidine 19. AgBF₄ (10 mg) est ajouté sous N₂ à une solution de 18b (38 mg) dans THF anhydre (10 cm³). Après 2 h de reflux sous N₂, la solution filtrée, diluée avec de l'eau, alcalinisée par NH₄OH et extraite par CH₂Cl₂ fournit une huile (21 mg) purifiée par chromatographie sur alumine d'activité III; 19 est obtenu (12 mg), non cristallisé; SM: M⁺ 378; IR: 1690–1250 cm⁻¹ (ester conjugué); UV $\lambda_{max\,mm}$ (EtOH): 224, 263, 307, 377, ϵ 22835, 32560, 19332, 5087; RMN¹H: 3.5 (3H, s, OCH₃), 3.63 (3H, s, COOCH₃), 4.16 (3H, s, N-CH₃), 6.9–8.26 (7H, m, H éthylénique et aromatiques).

Méthoxy-17 tetrahydro-17 ζ , 17-2 α , 7 α corynantheidine **20a**. **10a** (542 mg) est traité 12 h, à 50°, sous N₂, par une solution méthanolique de NaOMe (MeOH, 200 cm³, Na° 680 mg). Après traitement habituel, **20** est obtenu (509 mg) mélange d'épimères en 17), non cristallisé; SM: M⁺ 402, *m/e* 371; IR: 1740 et

1240 cm⁻¹ (ester); RMN¹H: 3.46 (6H, s, OCH₃), 3.73 (3H, s, COOCH₃), 4.56 (1/3 H, d; J = 7 Hz, H-16), 4.6 (2/3 H, d, J = 7 Hz, H-16), 6.6–7.6 (4H, m, aromatiques).

Méthoxy-17 cyano-5 α tetrahydro-16 ζ , 17-2 α ,7 α corynanthéidine 21a, Acétyl-1 hydrométhoxy-16ζ, 17 cyano-5a dihydro- $2\alpha.7\alpha$ corvnanthéidine 21b et benzènesulfonyl-1 methoxy-17 cyano-5 α tetrahydro-16, 17-2 α ,7 α corynanthéidine 21c. (a) Le dérivé 20a (800 mg) est trifluoroacétylé par l'anhydride trifluoroacétique (1 cm³) dans CH₂Cl₂ sec (10 cm³). Après traitement habituel, le dérivé 20b obtenu (800 mg) est irradié, en solution dans MeOH (100 cm³), sous O₂, en présence de KCN (200 mg), de pyruvate de sodium (200 mg) et de rose bengale (10 mg). Après transformation complète, on ajoute une solution de Na₂CO₃ à 10 p. 100 (5 cm³) et le mélange est chauffé 1 hr à 60° . Après refroidissement, le traitement habituel fournit un mélange qui, purifié par chromatographie sur colonne d'alumine standardisée Merck, donne par élution au toluène -CH2Cl2 21a (381 mg), non cristallisé, (mélange d'épimères en 17; SM: M⁺ 427, M-27; IR: 2220 cm⁻¹ (C \equiv N), 1740 et 1240 cm⁻¹ (ester); RMN¹H: 3.36 (6H, s, OCH₃), 3.7 (3H, s, COOCH₃), 4.5 (1/3 H, d, J = 7 Hz, H-17), 4.53 (2/3 H, d, J = 7 Hz, H-17), 6.6–7.1 (4H, m, aromatiques).

(b) Le dérivé **20**c (200 mg), obtenu par acétylation de **20**a dans les conditions habituelles, est irradié dans des conditions analogues à celles précédemment décrites et fournit **21**b (120 mg), non cristallisé; SM: M⁺ 469, M-27; IR: 2220 cm⁻¹ (C=N), 1740 et 1240 cm⁻¹ (ester); RMN¹H: 2.4 (3H, *s*, COCH₃), 3.40 et 3.43 (6H, 2*s*, OCH₃), 3.73 et 3.76 (3H, 2*s*, COOCH₃), 4.52 et 4.53 (1H, 2*d*, J = 7 Hz, H-17), 4.86 (1H, 2*dd*, H-2), 7.10–7.8 (4H, *m*, aromatiques).

(c) Le dérivé **20d** (2 g), obtenu par benzènesulfonylation de **20a** (PhSO₂Cl, pyridine), est irradié dans des conditions analogues à celles décrites pour **10c** \rightarrow **11c** et fournit après séparation chromatographique **21c** (450 mg), un mélange d'épimères en 17 dont l'un est obtenu pur par cristallisation dans MeOH, F 193°, (α)_D + 82°, C₃₀H₃₇N₃O₆S; SM: M⁺ 567, M-27 (HCN), *m/e* 389 (M-SO₂Ph); IR: 2220 cm⁻¹ (C=N), 1740 et 1250 cm⁻¹ (ester RMN¹H (400 MHz): 0.55 (3H, *t*, J = 7 Hz, CH₃ - 18), 3.36 (3H, *s*, OCH₃), 3.40 (3H, *s*, OCH₃), 3.51 (1H, *dd*, J = 10.5 Hz, J' = 8 Hz, H-5), 3.80 (3H, *s*, COCH₃), 4.25 (1H, *dd*, J = 10 Hz, J' = 3 Hz, H-2), 4.53 (1H, *d*, J = 7 Hz, H-17), 6.88-7.61 (9H aromatiques).

Enamine 22a. (a) Une solution de 21a (200 mg) ou de 21b (200 mg) dans HCl 0.1 n (50 cm³) est chauffée 4 hr à 70°. Après refroidissement et alcalinisation par NH₄OH, l'extraction par CH₂Cl₂ fournit 22a (150 mg), non cristallisé, (α)_D - 165°; SM: M⁺ 363, M-27; IR: 2220 cm⁻¹ (C=N), 1690 et 1240 cm⁻¹ (ester conjugué); UV $\lambda_{max\,nm}$ (EtOH): 292, 331, ϵ 10135, 19300; RMN¹H: 3.7 (3H, s, COOCH₃), 6.86–7.1 (4H, m, H aromatiques), 8.1 (1H, s, H-17).

(b) L'hydrolyse acide de **20a** (500 mg) par HCl 0.1 n (110 cm³) fournit après traitement habituel l'énamine **22b** (369 mg non cristallisée, (α)_D - 205°; SM: M⁺ 338, M-15, M-CO₂Me; IR: 1690 et 1230 cm⁻¹ (ester conjugué); UV λ_{maxnm} (EtOH): 293, 332, ϵ 13046, 25964; RMN¹H: 3.7 (3H, s, COOCH₃), 6.64-7.3 (4H, m, aromatiques), 8.17 (1H, s, H-17).

(c) L'irradiation de 22b (184 mg) dans des conditions analogues à celles décrites précédemment conduit à 22a (68 mg) analogue au composé précédemment décrit.

Dimère 23. Une solution de 21a (86 mg) et d'acétate d'Ag (35 mg) dans EtOH (10 cm³) est agitée 1 h à la température ordinaire. Après traitement habituel, la laque obtenue (70 mg) est purifiée par chromatographie préparative sur plaques et fournit 23 (25 mg), non cristallisé; SM: M^+ 736; RMN¹H: 3.7 (6H, s, OCH₃), 3.8 (6H, s, COOCH₃), 5.9 (1H, s, H-5').

N-1-benzènesulfonyl tétrahydro- 2α , 7α - 20α ,19 désoxy-10 sarpagine 24. (a) Une solution de 21c (450 mg) dans le dioxanne (10 cm³ est traitée 4 h à reflux par une solution aqueuse 4M de NaOH (10 cm³). Après refroidissement et acidification par CH₃COOH, l'extraction par CH₂Cl₂ fournit après évaporation un acide. L'excès de CH₃COOH est chassé par évaporation sous pression réduite en présence de toluène à plusieurs reprises. Le résidu est un mélange duquel l'aldéhyde 24a (66 mg, 20%), non cristallisé est séparé; SM: M⁺ 436, m/e 407 (M-CHO), m/e 395 (M-SO₂Ph); IR: 1700 cm⁻¹ (C=O); RMN¹H (400 MHz): 0.80 (3H, t, J = 7 Hz, CH₃-18), 4.63 (1H, dd, J = 7 Hz, J' = 6 Hz, H-2), 6.96-7.73 (9 H aromatiques), 9.61 (1H, s, CHO).

(b) Le dérivé 24a (40 mg) en solution dans MeOH (5 cm³) est traité par NaBH₄ (20 mg). Après 6 h, sous agitation, à la température ordinaire, l'extraction selon les procédés habituels fournit 24b (30 mg) purifié par chromatographie sur plaque d'alumine, non cristallisé; SM: M⁺ 438, M-17, m/e 365, 329, 297 (M-SO₂Ph); RMN¹H (400 MHz): 0.83 (3H, t, J = 7 Hz, CH₃-18); 4.69 (1H, dd, J = 7 Hz, J' = 6 Hz, H-2), 7-7.73 (9H aromatiques).

Remerciements—Angelina Florès-Parra remercie le gouvernement français pour l'octroi d'une bourse d'étude. Nous remercions A. Pancrazi pour l'aide apportée dans l'interprétation des spectres de RMN¹³C. Ce travail est dédié à Monsieur R. Goutarel pour son 72e anniversaire.

BIBLIOGRAPHIE

- ¹Oxydation photochimique d'amines tertiaires et d'alcaloïdes X: D. Herlem et F. Khuong-Huu, *Tetrahedron* **35**, 633 (1979).
- ²La nomenclature utilisée est celle préconisée par J. Le Men et W. I. Taylor, *Experientia* 21, 509 (1965).
- ³E. E. Van Tamelen et L. K. Oliver, J. Am. Chem. Soc. **92**, 2136 (1970); E. E. Van Tamelen et L. K. Oliver, *Bioorg. Chem.* **5**, 309
- (1973).
 ⁴D. Herlem, Y. Hubert-Brierre et F. Khuong-Huu, *Tetrahedron Letters* 4173 (1973).
- ⁵R. Bonnett V. M. Clark, A. Giddey et A. Todd, J. Chem. Soc. 2087 (1959).
- ⁶R. T. Brown et J. Leonard, Tetrahedron letters 4251 (1977).
- ⁷G. Büchi, P. H. Liang et H. Wuest, *Ibid.* 2763 (1978).
- ⁸J. Santamaria, D. Herlem et F. Khuong-Huu, *Tetrahedron* 33, 2389 (1977).
- ⁹J. Santamaria et F. Khuong-Huu, Ibid. 34, 1523 (1978).
- ¹⁰D. Herlem et F. Khuong-Huu, Ibid. 35, 633 (1979).
- ¹¹G. W. Gribble, P. D. Lord, I. Skotincki, S. E. Dietz, J. T. Eaton et J. L. Johnson, J. Am. Chem. Soc. **96**, 7812 (1974).
- ¹²F. Khuong-Huu, D. Herlem et Y. Hubert-Brierre, *Tetrahedron letters* 359 (1975).
- ¹³E. Wenkert, J. S. Bindra, C. J. Chang, D. W. Cochran et F. M. Schell, *Acc. Chem. Res.* 7, 46 (1974).
- ¹⁴J. Le Men, J. Le Men-Olivier, J. Lévy, M. C. Lévy-Appert-Collin et J. Hannart, *P. Ger. Offen.* 2, 410–651; *C. A.* 82, 4364Ou, 1975.
- ¹⁵I. Saito, M. Imuta, Y. Takahashi, S. Matsugo et T. Matsuura, J. Am. Chem. Soc. 99, 2005 (1977); K. Yamaguchi, T. Fueno, I. Saito et T. Matsuura, Tetrahedron letters 3433 (1979).
- ¹⁶L. A. Djakouré, F.-X. Jarreau et R. Goutarel, *Tetrahedron* 31, 2247 (1975).
- ¹⁷H. A. Bates et H. Rapoport, J. Am. Chem. Soc. 101, 1259 (1979).
- ¹⁸International Tables for X-Ray Crystallography Vol. IV. Kynoch Press, Birmingham, England (1974).